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To design conformally invisible cloaks for arbitrarily shaped objects, we use the nonuniform rational
B-spline �NURBS� to represent the geometrical modeling of the arbitrary object. Based on the method of
optical transformation, analytical formulas of the permittivity and permeability tensors are proposed for arbi-
trarily shaped invisible cloaks. Such formulas can be easily implemented in the design of arbitrary cloaks.
Full-wave simulations are given for heart-shaped invisible cloaks and perfectly electrical conducting �PEC�
objects, in which we observe that the power-flow lines of incoming electromagnetic waves will be bent
smoothly in the cloaks and will return to their original propagation directions after propagating around the
object. We also show that the scattered field from the PEC object coated with the invisible cloak is much
smaller than that from the PEC core. The application of NURBS in the design of arbitrary cloaks shows
transformation optics to be a very general tool to interface with commercial softwares like 3D STUDIOMAX and
MAYA.
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I. INTRODUCTION

Since Pendry et al. and Leonhardt proposed the interest-
ing idea to design an invisible cloak using the coordinate
transformation method �1,2�, more and more attention has
been focused on spherical and circularly cylindrical cloaks
�3–15�. The first practical cloak with simplified medium pa-
rameters was verified in the microwave frequency range �3�.
Inspired by such an idea, other applications such as the ro-
tation of electromagnetic �EM� waves �16�, reflectionless
complex media �17�, and EM-wave concentrators �18� have
been proposed. Invisibility with respect to solutions of the
Helmholtz and Maxwell equations has also been proposed
for the construction of several cloaking devices at all fre-
quencies �19�.

However, most works in the literature �3–15� on invisible
cloaks have focused attention on circular and spherical
shapes, which are relatively easier to design and analyze.
Recently, based on the metric invariance of Maxwell’s equa-
tions, constitutive tensors of EM masking as arbitrarily
shaped convex conducting objects has been derived �20�.
Such a masking can be regarded as a partial cloaking layer.
Only when the ratio between the maximum and minimum
radii of the object approaches 1—i.e., the object is a
sphere—could the masking be equivalent to an invisible
cloak �20�. Although a square-shaped invisible cloak has
been reported more recently �21�, design formulas for arbi-
trarily shaped cloaks are still unavailable.

In this paper, we introduce the nonuniform rational
B-spline �NURBS� �22� to represent the geometric modeling
of any objects, from which the design of conformally invis-
ible cloaks is presented based on the coordinate transforma-
tion. An arbitrarily shaped object can be divided into several
parts with each part described by NURBS. Then the confor-
mal cloak will also be divided into several parts. We will
construct the coordinate transformation in each part from

free space to a vaulted region. Analytical formulas of the
permittivity and permeability tensors are proposed for the
arbitrarily shaped invisible cloaks. As examples, the simula-
tion results of two different heart-shaped cloaks are pre-
sented to validate the design.

II. CONFORMALLY INVISIBLE CLOAKS FOR
ARBITRARILY SHAPED OBJECTS

Implicit functions and parametric equations are the two
most common methods to represent arbitrary curves in geo-
metrical modeling. As one of the parametric-curve represen-
tations, NURBS is a very popular scheme, from which it is
usually possible to split an arbitrary curve into a sequence of
rational Bézier curves approximately. The rational Bézier
curves of second order can represent all conic sections—
circles, ellipses, parabolas, and hyperbolas—and they are
easier to handle. Hence we use piecewise rational Bézier
curves to represent the geometric models of arbitrary objects
approximately.

A second-order curve consists of three control vertices
and three weights, as illustrated in Fig. 1. Furthermore, the
Bézier curve may be either a rational Bézier curve or a poly-
nomial Bézier curve since a rational Bézier curve is equiva-
lent to a polynomial Bézier curve when the control weights
are the same.

In this paper, we will investigate two-dimensional �2D�
arbitrarily cylindrical cloaks since 2D cloaks are more fea-
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FIG. 1. The second-order Bézier curve with three control points

P0, P1, and P2.
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sible to realize �3�. We first consider a section of an arbitrary
object, which is covered by a conformal cloaking shell, as
shown in Fig. 2. The boundary of the section can be repre-
sented by a Bézier curve accurately, whose control points are
A�a0 ,b0�, P1�a1 ,b1�, and B�a2 ,b2� and control weights are
w0, w1, and w2, respectively. The parametric equations of the
curve can be written as

x�u� =
w0a0�1 − u�2 + 2w1a1�1 − u�u + w2a2u2

w0�1 − u�2 + 2w1�1 − u�u + w2u2 , �1�

y�u� =
w0b0�1 − u�2 + 2w1b1�1 − u�u + w2b2u2

w0�1 − u�2 + 2w1�1 − u�u + w2u2 , �2�

where u is a positive parameter �0�u�1�.
Now we want to compress the space A�OB� into the shell

space A�ABB� using a coordinate transformation. Choose an
arbitrary point H�x ,y� in the original coordinate system; its
corresponding point is H��x� ,y�� in the transformed system,
as shown in Fig. 2. We denote the distance OH as r
=�x2+y2 and OH� as r�=�x�2+y�2. Then the coordinate
transformation equation from the original space to the new
space is expressed as

r� =
�OA�� − �OA�

�OA��
r + R1, �3�

in which R1 is the distance of OJ and J is the intersection
point of OH� and the inner Bézier curve.

In order to obtain a conformally invisible cloak, we em-
ploy a conformal transformation

�OC�� − �OC�
�OC��

=
�OA�� − �OA�

�OA��
,

which holds for any point C� on the outer boundary. Here, C
is the joint point of OC� and the inner boundary. We denote
the slopes of OH, OA, and OB as t, t0, and t2. Then the
slopes of OH� and OJ are also t. As a consequence, we easily
have

w0b0�1 − u�2 + 2w1b1�1 − u�u + w2b2u2

w0a0�1 − u�2 + 2w1a1�1 − u�u + w2a2u2 = t , �4�

which is also expressed as

��w0a0 − 2w1a1 + w2a2�t − �w0a0 − 2w1a1 + w2a2��u2

+ ��− 2w0a0 + 2w1a1�t + 2w0b0 − 2w1b1�u

+ w0a0t − w0b0 = 0.

Let L= �w0a0−2w1a1+w2a2�t− �w0a0−2w1a1+w2a2�, M
= �−2w0a0+2w1a1�t+2w0b0−2w1b1, and N=w0a0t−w0b0;
the solution is then obtained as

u =
− M � �M2 − 4LN

2L
, �5�

in which the “+” or “−” sign is determined by the following
two conditions: �a� u=0, if t= t0; �b� u=1, if t= t2.

Hence the solution to Eq. �4� is determined and we can
get the coordinates at the point J �xJ ,yJ� from Eqs. �1� and
�2� and, furthermore, the length of OJ as R1=R�x ,y� or R1
=R��x� ,y��. We define the operators A=R�x ,y� /r and A�
=R��x� ,y�� /r�. Due to the transformation invariance, the unit
vectors in the original and transformed spaces must be equal
�4�: x� /r�=x /r and y� /r�=y /r. Let

k =
�OA�� − �OA�

�OA��
;

then, the coordinate transformation formulas can be ex-
pressed as

x� = �k + A�x , �6�

y� = �k + A�y , �7�

z� = z . �8�

With the above equations, we can easily obtain the Jacobian
transformation matrix �4� as

�̄ =�
�x�

�x

�x�

�y
0

�y�

�x

�y�

�y
0

0 0 1
� �9�

=�k + A + xAx xAy 0

yAx k + A + yAy 0

0 0 1
� ,

�10�

in which Ax and Ay represent the derivatives of A with re-
spect to x and y, respectively. The determinant of the Jaco-
bian matrix has a closed-form expression

det��̄� = �k + A�2 + �k + A��xAx + yAy� . �11�

By metric invariance of Maxwell’s equations, we then
obtain the constitutive parameter tensors of the medium in
the transformed space as �4�

�� =
�̄ · �̄ · �̄T

det��̄�
, �12�

FIG. 2. The cross sections of an arbitrarily shaped object and the
conformal cloak in the Cartesian coordinate system, in which H is
an arbitrary point in the original space and H� is the corresponding
point in the transformed space.
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�� =
�̄ · �̄ · �̄T

det��̄�
, �13�

in which an exp�−i�t� time dependence has been assumed.
In our study, we assume the original space be free space: �̄
=I�0 and �̄=I�0. Hence the relative permittivity and perme-
ability tensors in the cloaking region can be expressed as

�r� = �r� = ��xx �xy 0

�yx �yy 0

0 0 �zz
� , �14�

in which

�xx =
�k + A�2 + 2�k + A�xAx + x2�Ax

2 + Ay
2�

det��̄�
, �15�

�xy =
�k + A��yAx + xAy� + xy�Ay

2 + Ax
2�

det��̄�
= �yx, �16�

�yy =
�k + A�2 + 2�k + A�yAy + y2�Ax

2 + Ay
2�

det��̄�
, �17�

�zz =
1

det��̄�
. �18�

The relation between the original and transformed coordi-
nates can be established as

x =
1

k
�1 − A��x�, �19�

y =
1

k
�1 − A��y�. �20�

Equations �15�–�18� provide full design parameters of the
permittivity and permeability tensors for the single confor-
mal cloaking shell AA�B�B. The material parameters of other
cloaking sections can be obtained in a similar way. Clearly,
the cloaks are composed of inhomogeneous and anisotropic
metamaterials.

III. FULL-WAVE SIMULATIONS AND DISCUSSIONS

In order to validate the design formulas of the conformal
cloak for arbitrary object, we make full-wave simulations on
two different heart-shaped cloaks using the commercial soft-
ware COMSOL MULTIPHYSICS, which is based on the finite-
element method. When a transverse-electric- �TE-� polarized
plane wave is incident upon a heart-shaped cloak, there ex-
ists only the z component of the electric field. Hence this is
actually a 2D problem. The computational domain and
boundaries are shown in Fig. 3, where perfectly matched
layers �PMLs� are employed as the absorbing boundaries. In
the following examples of heart-shaped cloaks, the working
frequency is 2 GHz and k is set as 0.5. Hence the free-space
wavelength is �=0.15 m. The inner boundaries are chosen

to be perfectly electric conductors �PECs� so that no waves
can penetrate into the cloaked area. The cloak is composed
of the inhomogeneous and anisotropic materials defined in
Eqs. �15�–�18�.

Figure 4 illustrates the numerical results of electric fields
for a heart-shaped cloak and PEC object using different dis-
cretizations when the plane waves are incident from the left

FIG. 3. �Color online� The computational domain and its bound-
aries used for full-wave simulations of the arbitrarily shaped cloaks.
The inner boundary is PEC, and the cloak layer is composed of
inhomogeneous and anisotropic materials defined in Eqs. �15�–�18�.

FIG. 4. �Color online� The electric-field distributions and
power-flow lines in the computational domain for a heart-shaped
cloak and PEC object using different discretizations when the plane
waves are incident from the left to the right. �a� 456 000 triangular
meshes are used �upper figure�. �b� 60 000 triangular meshes are
used �lower figure�.
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to the right. The heart-shaped PEC object �the inner bound-
ary� is divided into two sections: the left and right. The left
section is described by the Bézier curve whose control points
are �0,−0.1�, �−0.3,0.3�, and �0, 0.1�, respectively. The right
section is described by the Bézier curve with the control
points �0,−0.1�, �0.3, 0.3�, and �0, 0.1�. In both sections, the
control weights are 2, 1, and 2. Hence we can obtain the
parametric equations of the two curves as

left section: x�u� = 0.6u2 − 0.6u , �21�

y�u� = − 0.6u2 + 0.8u − 0.1, �22�

right section: x�u� = − 0.6u2 + 0.6u , �23�

y�u� = − 0.6u2 + 0.8u − 0.1, �24�

in which u� �0,1�. We then can construct the coordinate
transformation and compute the permittivity and permeabil-
ity tensors of the cloak using formulas derived earlier.

When the plane waves are incident from the left to the
right, Fig. 4�a� demonstrates the electric-field distributions
and the power-flow lines in the computational domain, which
is discretized by 456 000 triangular meshes. In the interior
region, the fields are zero as predicted; in the cloaking re-
gion, we observe that the power-flow lines propagate
smoothly around the heart-shaped object and the equal-phase
surfaces are warped smoothly in the expected way. Outside
the cloak, the TE-polarized plane waves are almost un-
changed as if the object does not exist. Hence the invisible
cloak for the heart-shaped PEC object is well verified.

In order to study the effect of different discretizations on
the invisible properties, we simulate the same heart-shaped
cloak and PEC object as that in Fig. 4�a� using 60 000 trian-
gular meshes, which are 7.5 times fewer than those in Fig.
4�a�. The simulation results for the electric-field distributions
and the power-flow lines are illustrated in Fig. 4�b�. Clearly,
they are nearly identical to those in Fig. 4�a� even in the
concave area of the cloak. We make more simulations using
coarser meshes, which show that the permittivity and perme-
ability profiles given by Eqs. �15�–�18� are very stable with
discretizations.

Next we consider the invisible properties of the designed
cloak in different incident directions. Figure 5 illustrates the
electric-field distributions and the power-flow lines in the
computational domain when the plane waves are incident
from the top and bottom, respectively. In both cases, the
power-flow lines with the cloak propagate smoothly around
the heart-shaped object, making it invisible. It is even true
when the incident waves travel toward the concave area of
the cloak, as shown in Fig. 5�a�.

In order to observe the reduction of scattering fields at the
design frequency with the invisible cloak quantitatively, we
have computed the scattered fields of the heart-shaped PEC
object on the observation line, y=0.4 m, with and without
the invisible cloak. Figures 6�a� and 6�b� demonstrate the
comparison of such scattered fields when the plane waves are

incident from the top and bottom, respectively. Figure 6�a�
shows a backward-scattering case, and Fig. 6�b� denotes a
forward-scattering case. In both cases, the scattered field
with the invisible cloak has a significant reduction.

In the above analysis, we have designed a heart-shaped
cloak whose boundary is represented by polynomial Bézier
curves. Next we give another example of an inverted heart-
shaped cloak and PEC object, whose boundary is represented
by rational Bézier curves. For the inverted heart-shaped PEC
object, we also divide it into two sections. Then the left
section is described by the rational Bézier curve with the
control points �0,−0.1�, �−0.4,−0.2�, and �0, 0.1�. The right
section is described by the rational Bézier curve with the
control points �0,−0.1�, �0.4,−0.2�, and �0, 0.1�. In both sec-
tions, the control weights are 2, 1, and 2. Hence the paramet-
ric equations are obtained as

left section: x�u� =
0.4u2 − 0.4u

u2 − u + 1
, �25�

y�u� =
0.2u2 − 0.1

u2 − u + 1
, �26�

FIG. 5. �Color online� The electric-field distributions and
power-flow lines in the computational domain for a heart-shaped
cloak and PEC object with different incident directions. �a� The
plane waves propagate from the top to the bottom �upper figure�. �b�
The plane waves propagate from the bottom to the top �lower
figure�.
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right section: x�u� =
− 0.4u2 + 0.4u

u2 − u + 1
, �27�

y�u� =
0.2u2 − 0.1

u2 − u + 1
. �28�

Similar to the earlier example, Fig. 7 illustrates the full-wave
simulation results of the inverted heart-shaped PEC object
and cloak when the TE-polarized plane waves are incident
from the left to the right. As the plane waves pass through
the heart cloak, they are guided around the inner PEC object,
as shown in Fig. 7�a�. Outside the cloak, the plane waves
nearly keep their original path and the PEC object is nearly
invisible. In order to show the invisible properties clearly, the
scattered electric fields from the inverted heart-shaped PEC
object with and without the cloak along the observation lines
x=0.4 m and x=0.7 m are computed, as shown in Figs. 7�b�
and 7�c�, respectively. In Fig. 7�b�, the observation line is
one wavelength away from the PEC object; in Fig. 7�c�, the
observation line is three wavelengths away from the PEC
object. In both cases, the scattered fields with the invisible
cloak are much smaller than those without the cloak. Hence
very good effects of the invisibility of the designed cloak
have been observed.

IV. CONCLUSIONS

In summary, we have shown how to design conformally
invisible cloaks for arbitrary-shaped objects based on the

NURBS curves for geometrical modeling and the corre-
sponding optical transformation method. The proposed ap-
proach can also be extended to nonconformal transforma-
tions. The application of NURBS in the design of arbitrary
cloaks shows the transformation optics to be a very general
tool to interface with commercial softwares like 3D STUDI-

OMAX and MAYA.
In future work, we will investigate simplified formula-

tions of the permittivity and permeability so that the cloaking
material can be experimentally realized.
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FIG. 6. �Color online� The comparison of scattered electric
fields for the heart-shaped PEC object with and without the invis-
ible cloak at the observation line y=0.4 m. �a� The incident plane
waves propagate from the top to the bottom �upper figure�. �b� The
plane waves propagate from the bottom to the top �lower figure�.
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FIG. 7. �Color online� �a� The electric-field distributions and
power-flow lines in the computational domain for an inverted heart-
shaped cloak and PEC object when the plane waves are incident in
the horizontal direction from the left to the right �upper figure�. �b�
The comparison of scattered electric fields for the inverted heart-
shaped PEC object with and without the invisible cloak at the ob-
servation line x=0.4 m �middle figure�. �c� The comparison of scat-
tered electric fields for the inverted heart-shaped PEC object with
and without the invisible cloak at the observation line x=0.7 m
�lower figure�.
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